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Abstract

For low-temperature sintering, mixtures of AIN powder doped with 3.53 masg® ¥nd 0-2.0 mass% CaO as sintering additives were
pulverized and dispersed in a vertical super-fine grinding mill with very small, Bads. The particle sizes achieved ranged between 50
and 100 nm after grinding for 90 min. The mixtures were then fired at 10000508 0—6 h under nitrogen gas pressure of 0.1 MPa. All
nano-sized powders showed pronounced densification from°T3@6 revealed by shrinkage measurement. The larger amounts of sintering
additives enhanced AIN sintering at lower temperatures. Densified AIN ceramics with very fine and uniform grains ofpGrBw@re
obtained at a firing temperature of 15@for 6 h.

© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction close to theoretical densities could be obtained by pressure-
less sintering at 170TC using nano-sized powders. Although
AIN ceramics have been used for substrates, packagingnano-sized powders possess intrinsic good sintering prop-
materials for high power integrated circuits for electronic erties and nano-sized AIN powders have been successively
devices, refractive materials in the metallurgical industry and synthesized®22 these powders have a tendency to form
so on!~3 However, due to its high covalent bonding, it is agglomerations which result in poor sinterability. So the sin-
difficult to achieve solid-state sintering without using submi- tering temperatures also dwell above 170¢-10:24
crometer powders or high pressufdsiquid-phase sintering On the other hand, coarse powders can be made smaller
can be carried out to produce densified AIN ceramics. The and more homogeneous by grinding. Conventional grind-
most common additives are rare-earth and/or alkaline earthing methods, however, such as ball-milling or planetary
oxides*®which react with AbOz on the surface of AINpow-  milling, are only effective down to certain sizes. In a pre-
ders during sintering. The additives not only form a liquid vious experiment® an attempt was made to pulverize AIN
phase to enhance densification, but also improve the ther-powder with a primary patrticle size of Ou2n, which agglom-
mal conductivity by eliminating the oxygen from the AIN erate size ranged from 0.5 to Juéh, by planetary milling
lattice®7 In addition, the sinterability of AIN compacts is and ultrasonic vibration; however, the size and shape of
strongly dependent on size of starting powders. Nano-sizedagglomerations showed no significant changes. In the present
particles have shown potential for low-temperature sinter- paper, we describe a new process for pulverizing and dis-
ing. Hashimoto et af.and Panchula et dldemonstrated that  persing AIN agglomerate powder doped with sintering aids
by using very small mill media. Our main purpose is to
* Corresponding author. Tel.: +81 52 736 7153; fax: +81 52 736 7405. d_emonStrate that nano-sized particles _from W_e_ll-ground and
E-mail addresses: jinyu-giu@aist.go.jp (J.-Y. Qiu), dispersed AIN powder possess good sinterability even under
koji-watari@aist.go.jp (K. Watari). low-temperature sintering.
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Tablel _ . observed by SEM. The crystalline phases were analyzed by
Compositions of the various AIN-X03—CaO powder mixtures X-ray diffraction analysis (XRD, RINT-2000, Rigaku Corp.,
NO AIN (mass%) ¥% O3 (mass%) CaO (mass%) Japan),

AYCO 96.47 3.53 0

AYC1 95.47 3.53 1.0

AYC2 94.47 3.53 2.0 3. Results and discussion

3.1. Pulverization and dispersion of the agglomerated
2. Experimental AIN mixtures

High purity AIN powder (MAN-10, Mitsui Chemicals, Fig. 1shows the particle size distributions of the raw and
Tokyo, Japan, primary particle size: uEn, specific sur- the mixture of AIN powder doped with 3.53 mass%(;
face area: 10 Rig, oxygen content: 1.03 mass%), originally (AYCO mixture) after grinding for 90 min. Their SEM pho-
synthesized by vapor phase reaction between Alg)s tographs are shown iRig. 2 The raw powder contained a
and NH; as the starting material, was used in this study. significant proportion of particles with over 1ufn, and a
3.53 mass% ¥Ospowder (purity 99.99%, Hokko Chemicals, wider particle size distribution. The mean particle size was
Tokyo, Japan) and 0—2.0 mass% CaO powder were doped intd.38um. The agglomerate particles had sizes ranging from
the AIN powder as sintering additives. CaO was added in the 0.5 to 1.5u.m before grinding. As a result of the grinding
form of CaCQ (purity 99.5%, Wako Pure Chemical Indus- process, powders or strongly coagulated agglomerates were
tries, Osaka, Japan). The compositions of the mixtures aresheared between small, hard-material Zb®ads which were
listed in Table 1 One hundred grams of these mixtures and forced to stir in a limited volume, resulting in stronger grind-
900 ml of isopropyl alcohol solvent were mixed and the slur- ing efficiency. The agglomerates were broken apart into very
ries pulverized and dispersed in a vertical super-fine grinding small particles.Fig. 1(b) shows that the size distribution
mill (UAM-015, Kotobuki Eng. & Mfg. Co. Ltd., Japan) using  shifted to the small end and became narrower and the fraction
ZrO; beads 0.1 mm in diameter as the mill media and ground of larger particles, over 140m in size decreased drastically
for 90 min. An agitation speed of 4000 rpm was used to after grinding. The mean particle size was reduced to about
exert both shearing and imparting forces on the AIN agglom- 0.14um after grinding. The particles approached the nano
erate particles. After drying, the granules were uniaxially scale, and showed a narrow particle size distribution. From
pressed at 10 MPa in a steel die to make pellets. The pel-SEM observation, we found that the particle sizes were homo-
lets were cold isostatically pressed (CIP’ed) under 300 MPa geneous, suggesting that super-fine grinding is an efficient
for 120 s. The specimens were then placed into a BN crucible method for pulverization and dispersion of the agglomerate
and sintered at 1000-150Q for 0—6 h in flowing nitrogen AIN mixtures, and the final powder became homogeneous
gas. and finer than that of their primary particldsig. 3 shows

The shrinkages and densities of the specimens were meathe TEM micrograph of the AYCO mixture after grinding for
sured using vernier caliper along the diameter of the sintered90 min. Itindicates that the sizes of individual particle ranged
pelletg® and the Archimedes method, respectively. The par- between 50 and 100 nm.
ticle size distributions of the mixtures were measured using  The phase of well-ground powder was detected by XRD.
a laser diffraction particle size analyzer (LA-920, Horiba, AIN and Y03 were identified as the major and minor crys-
Japan). The ground powders were observed by scanning electalline phases, respectively. No traces of Ziere detected.
tron microscopy (SEM, JSM-5600N, Jeol, Tokyo, Japan) The final particles produced an extensive broadening of the
and transmission electron microscopy (TEM, JEM 2010, diffraction peaks and a decrease in X-ray intensities. The
Jeol Ltd.). The fracture surfaces of the samples were alsocrystalline size of finely ground AIN powder was calculated
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Fig. 1. The particle-size distribution after grinding for 90 min of (a) the raw AIN powder and (b) with 3.53 magd%@ddition (AYCO).



J.-Y. Qiu et al. / Journal of the European Ceramic Society 26 (2006) 385-390 387

Fig. 2. SEM photographs of (a) the raw AIN powder before grinding and (b) with 3.53 mag&addition (AYCO) after grinding for 90 min.

using Scherer’s Equation with XRD peak intensiiésnd CaO content at the initial stage of sintering. The different
was estimated to be about 120 nm, which was in accordanceshrinkages of the fired samples wita@3 and CaO additions
with observations from the measurements by the laser diffrac-were most likely attributable to the effects of the sintering

tion particle size analyzer and TEM observation. additives on the liquid phases during the various sintering
temperature$® Doping with CaO increases the amount of
3.2. Sintering characteristics liquid phase, resulting in enhanced densification. Finally, the

shrinkages tended to be the same value at a sintering temper-

The shrinkage behaviors of the specimens with ature of 1500C for 6 h. The total shrinkage was about 20%
3.53mass% YOz and various amounts of CaO addition for all the densified samples. _ _
are shown inFig. 4. For well-ground powder with ¥Os The sinterability of the nanocrystalline AIN with
and CaO sintering additions, marked shrinkages occurred4-0 mass% nanocrystalline;¥sas a sintering aid has been
at temperatures above 13D in all cases. For comparison  investigated by Panchula et‘allhey reported that the den-
the sintering shrinkage curves of the agglomerated pow- Sity of the sintered sample reache85% of the theoretical
der, the sintering shrinkage curve line of the agglomerate density at 1550C, but it did not further improve above
MAN-12 powder (specific surface area: 13/g) doped with ~this temperature. This is because that th&Y agglomer-
5.2mass% ¥032 is also shown irFig. 4. Its shrinkage is ~ atés prevented from the densification of AIN ceramics. As
considerably lower than that using well-ground AIN pow- Mentioned above, the mixtures of AN with®s and CaO
der at the range of 1300-1500. It is clearly indicated  Sintering additions were milled together through super-fine
that sintering of the nano-sized AIN powder prepared by the 9rinding mill in our process. This suggested that the mixing
super-fine grinding mill stimulated densification at lower sin- ©f raw AIN and additions could be dispersed homogeneously
tering temperatures. It was also observed that the shrinkagePy this novel process. According to the XRD patterns, ZrN
of sintered specimens increased with increasing amount ofas detected as one of the secondary phases, suggesting that
amorphous Zr@contamination from the beads reacted with
AIN and was converted to ZrN at high temperatures in the
nitrogen gag®2°The formations of ZrN phase are described
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Fig. 3. TEM micrograph the mixture of AIN powder with 3.53 mass%¥ Fig. 4. The shrinkages of the specimens at firing temperatures between 1000

addition (AYCO) after grinding for 90 min. and 1500C and at 1500C for various duration.
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Fig. 6. SEM micrographs of (a) the AYCO mixture; (b) the AYC1 mixture and (c) the AYC2 mixture sintered at C5006 h.
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by reactions (1) and (2) below. The densities of AYCO, AYC1 sintering. Fully densified specimens were achieved after a
and AYC2 were 3.39, 3.42 and 3.40 gRrafter firing at holding time of 6 h. The investigation of the microstructures
1500°C for 6 h, respectively. These values exceeded the the-showed uniform grains with a size of 0.3—@.#h. Very small
oretical density of AIN (3.26 g/cA) is due to the density of  grain size AIN ceramic obtained by low-temperature sin-

ZrN (7.29 g/crd). tering will meet the requirements for several new potential
applications.

6ZrO2 +8AIN — 6ZrN + 4AI203+ Ny 1)

47210 +4AIN — 4ZrN + 2A1,03+ 0Oy (2)
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